368 research outputs found

    Indistinguishable Landscapes of Meiotic DNA Breaks in rad50+ and rad50S Strains of Fission Yeast Revealed by a Novel rad50+ Recombination Intermediate

    Get PDF
    The fission yeast Schizosaccharomyces pombe Rec12 protein, the homolog of Spo11 in other organisms, initiates meiotic recombination by creating DNA double-strand breaks (DSBs) and becoming covalently linked to the DNA ends of the break. This protein–DNA linkage has previously been detected only in mutants such as rad50S in which break repair is impeded and DSBs accumulate. In the budding yeast Saccharomyces cerevisiae, the DSB distribution in a rad50S mutant is markedly different from that in wild-type (RAD50) meiosis, and it was suggested that this might also be true for other organisms. Here, we show that we can detect Rec12-DNA linkages in Sc. pombe rad50+ cells, which are proficient for DSB repair. In contrast to the results from Sa. cerevisiae, genome-wide microarray analysis of Rec12-DNA reveals indistinguishable meiotic DSB distributions in rad50+ and rad50S strains of Sc. pombe. These results confirm our earlier findings describing the occurrence of widely spaced DSBs primarily in large intergenic regions of DNA and demonstrate the relevance and usefulness of fission yeast studies employing rad50S. We propose that the differential behavior of rad50S strains reflects a major difference in DSB regulation between the two speciesβ€”specifically, the requirement for the Rad50-containing complex for DSB formation in budding yeast but not in fission yeast. Use of rad50S and related mutations may be a useful method for DSB analysis in other species

    Ctp1 and the MRN-Complex Are Required for Endonucleolytic Rec12 Removal with Release of a Single Class of Oligonucleotides in Fission Yeast

    Get PDF
    DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5β€² ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Ξ” and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal

    Accuracy of magnetic resonance studies in the detection of chondral and labral lesions in femoroacetabular impingement : systematic review and meta-analysis

    Get PDF
    Background: Several types of Magnetic resonance imaging (MRI) are commonly used in imaging of femoroacetabular impingement (FAI), however till now there are no clear protocols and recommendations for each type. The aim of this meta-analysis is to detect the accuracy of conventional magnetic resonance imaging (cMRI), direct magnetic resonance arthrography (dMRA) and indirect magnetic resonance arthrography (iMRA) in the diagnosis of chondral and labral lesions in femoroacetabular impingement (FAI). Methods: A literature search was finalized on the 17th of May 2016 to collect all studies identifying the accuracy of cMRI, dMRA and iMRA in diagnosing chondral and labral lesions associated with FAI using surgical results (arthroscopic or open) as a reference test. Pooled sensitivity and specificity with 95% confidence intervals using a random-effects meta-analysis for MRI, dMRA and iMRA were calculated also area under receiver operating characteristic (ROC) curve (AUC) was retrieved whenever possible where AUC is equivocal to diagnostic accuracy. Results: The search yielded 192 publications which were reviewed according inclusion and exclusion criteria then 21 studies fulfilled the eligibility criteria for the qualitative analysis with a total number of 828 cases, lastly 12 studies were included in the quantitative meta-analysis. Meta-analysis showed that as regard labral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.864, 0.833 and 0.88 and for dMRA were 0.91, 0.58 and 0.92. While in chondral lesions the pooled sensitivity, specificity and AUC for cMRI were 0.76, 0.72 and 0.75 and for dMRA were 0.75, 0.79 and 0.83, while for iMRA were sensitivity of 0.722 and specificity of 0.917. Conclusions: The present meta-analysis showed that the diagnostic test accuracy was superior for dMRA when compared with cMRI for detection of labral and chondral lesions. The diagnostic test accuracy was superior for labral lesions when compared with chondral lesions in both cMRI and dMRA. Promising results are obtained concerning iMRA but further studies still needed to fully assess its diagnostic accuracy

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    Social interaction, noise and antibiotic-mediated switches in the intestinal microbiota

    Get PDF
    The intestinal microbiota plays important roles in digestion and resistance against entero-pathogens. As with other ecosystems, its species composition is resilient against small disturbances but strong perturbations such as antibiotics can affect the consortium dramatically. Antibiotic cessation does not necessarily restore pre-treatment conditions and disturbed microbiota are often susceptible to pathogen invasion. Here we propose a mathematical model to explain how antibiotic-mediated switches in the microbiota composition can result from simple social interactions between antibiotic-tolerant and antibiotic-sensitive bacterial groups. We build a two-species (e.g. two functional-groups) model and identify regions of domination by antibiotic-sensitive or antibiotic-tolerant bacteria, as well as a region of multistability where domination by either group is possible. Using a new framework that we derived from statistical physics, we calculate the duration of each microbiota composition state. This is shown to depend on the balance between random fluctuations in the bacterial densities and the strength of microbial interactions. The singular value decomposition of recent metagenomic data confirms our assumption of grouping microbes as antibiotic-tolerant or antibiotic-sensitive in response to a single antibiotic. Our methodology can be extended to multiple bacterial groups and thus it provides an ecological formalism to help interpret the present surge in microbiome data.Comment: 20 pages, 5 figures accepted for publication in Plos Comp Bio. Supplementary video and information availabl

    A cross-national study on the antecedents of work–life balance from the fit and balance perspective

    Get PDF
    Drawing on the perceived work–family fit and balance perspective, this study investigates demands and resources as antecedents of work–life balance (WLB) across four countries (New Zealand, France, Italy and Spain), so as to provide empirical cross-national evidence. Using structural equation modelling analysis on a sample of 870 full time employees, we found that work demands, hours worked and family demands were negatively related to WLB, while job autonomy and supervisor support were positively related to WLB. We also found evidence that resources (job autonomy and supervisor support) moderated the relationships between demands and work–life balance, with high resources consistently buffering any detrimental influence of demands on WLB. Furthermore, our study identified additional predictors of WLB that were unique to some national contexts. For example, in France and Italy, overtime hours worked were negatively associated with WLB, while parental status was positively associated with WLB. Overall, the implications for theory and practice are discussed.Peer ReviewedPostprint (author's final draft

    Interactive Actor Analysis for Rural Water Management in The Netherlands

    Get PDF
    Recent developments in the policy sciences emphasize the social environment in which decisions are made. The β€˜network metaphor’ is often used to describe the key role of interactions between interdependent actors involved in decision making. These interactions take place in a policy arena drawn up by actors with an interest in and control over decisions on the issues addressed. Interdependencies, caused by the need for actors to increase their means of realizing objectives, are the driving force behind these interactions. Dependency relations are of special interest to water management and river basin management because of the fundamental asymmetrical interdependencies that exist in river basins between upstream and downstream stakeholders. Coleman’s linear system of action models decision making process involving dependencies between multiple stakeholders as exchange of control over issues, while interactions are required to negotiate exchanges of control. We developed an interactive method for actor analysis based on Coleman’s linear system of action and applied it to the national rural water management policy domain in The Netherlands. The method is firmly rooted in mathematical sociology and defies the criticism that methods for actor and stakeholder analysis do not specify a theoretical basis explaining the causal relations between the variables analyzed and policy change. With the application to the rural water management policy arena we intended to increase our insight into the practical applicability of this analyticmethod in an interactive workshop, the acceptability of the approach for the participating actors, its contribution to the process of decision making and our understanding of the rural water management policy arena in The Netherlands. We found that the Association of Water Authorities, the Ministry of Public Works and the Ministry of Agriculture are the most powerful actor in the policy domain, while governance and cost and benefits of rural water management are the most salient issues. Progress in policy development for rural water management is probably most promising for the issues governance, costs and benefits, safety and rural living conditions through improved interaction between the Association of Water Authorities, the Ministry of Agriculture and the Rural Credit Bank. Besides these analytic results the interactive approach implemented increased the participants understanding of their dependency on other actors in the rural water management policy domain and supported them in developing a sound perspective on their dependency position. We concluded that the method developed is acceptable to real-world policy decision makers, can successfully be applied in an interactive setting, potentially contributes to the process of decision making by increasing the participants understanding of their dependency position, has the potential to delivers valuable advice for future decision-making and increases our understanding of policy development for rural water management in general

    Development of paediatric quality of inpatient care indicators for low-income countries - A Delphi study

    Get PDF
    BACKGROUND: Indicators of quality of care for children in hospitals in low-income countries have been proposed, but information on their perceived validity and acceptability is lacking. METHODS: Potential indicators representing structural and process aspects of care for six common conditions were selected from existing, largely qualitative WHO assessment tools and guidelines. We employed the Delphi technique, which combines expert opinion and existing scientific information, to assess their perceived validity and acceptability. Panels of experts, one representing an international panel and one a national (Kenyan) panel, were asked to rate the indicators over 3 rounds and 2 rounds respectively according to a variety of attributes. RESULTS: Based on a pre-specified consensus criteria most of the indicators presented to the experts were accepted: 112/137(82%) and 94/133(71%) for the international and local panels respectively. For the other indicators there was no consensus; none were rejected. Most indicators were rated highly on link to outcomes, reliability, relevance, actionability and priority but rated more poorly on feasibility of data collection under routine conditions. There was moderate to substantial agreement between the two panels of experts. CONCLUSIONS: This Delphi study provided evidence for the perceived usefulness of most of a set of measures of quality of hospital care for children proposed for use in low-income countries. However, both international and local experts expressed concerns that data for many process-based indicators may not currently be available. The feasibility of widespread quality assessment and responsiveness of indicators to intervention should be examined as part of continued efforts to improve approaches to informative hospital quality assessment

    BRIT1/MCPH1 Is Essential for Mitotic and Meiotic Recombination DNA Repair and Maintaining Genomic Stability in Mice

    Get PDF
    BRIT1 protein (also known as MCPH1) contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1βˆ’/βˆ’ mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1βˆ’/βˆ’ mice and mouse embryonic fibroblasts (MEFs) were hypersensitive to Ξ³-irradiation. BRIT1βˆ’/βˆ’ MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1βˆ’/βˆ’ mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs) were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice

    A High Throughput Genetic Screen Identifies New Early Meiotic Recombination Functions in Arabidopsis thaliana

    Get PDF
    Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes
    • …
    corecore